Docetaxel and/or zoledronic acid for hormone-naïve prostate cancer: First survival results from STAMPEDE

Nicholas James
University of Warwick and Queen Elizabeth Hospital Birmingham

on behalf of

Matthew Sydes, Malcolm Mason, Noel Clarke, David Dearnaley, Melissa Spears, Robin Millman, Chris Parker, Alastair Ritchie, J. Martin Russell, John Staffurth, Robert Jones, Shaun Tolan, John Wagstaff, Andrew Protheroe, Rajaguru Srinivasan, Alison Birtle, Joe O'Sullivan, Richard Cathomas, Mahesh Parmar and the STAMPEDE Investigators
Setting and hypothesis

• Setting
 ▪ Hormone therapy the mainstay of treatment since 1940s
 ▪ Addition of radiotherapy to N0M0 disease improves outcomes

• Hypothesis
 ▪ Early use of active therapies may give a larger absolute benefit in overall survival
Rationale for study agents

• **Docetaxel**
 - Prolongs survival in metastatic castrate refractory disease
 - Well tolerated in elderly population

• **Zoledronic acid**
 - Reduces skeletal related events in bony metastatic castrate refractory disease
 - At time of set up under investigation as metastasis prevention agent in range of settings

• **Combination therapy**
 - In vitro evidence of synergy
 - Anticipated the combination well tolerated
Rationale for study agents

- **Docetaxel**
 - Prolongs survival in metastatic castrate refractory disease
 - Well tolerated in elderly population

- **Zoledronic acid**
 - Reduces skeletal related events in bony metastatic castrate refractory disease
 - At time of set up under investigation as metastasis prevention agent in range of settings

- **Combination therapy**
 - In vitro evidence of synergy
 - Anticipated the combination well tolerated
Rationale for study agents

• Docetaxel
 ▪ Prolongs survival in metastatic castrate refractory disease
 ▪ Well tolerated in elderly population

• Zoledronic acid
 ▪ Reduces skeletal related events in bony metastatic castrate refractory disease
 ▪ At time of set up under investigation as metastasis prevention agent in range of settings

• Combination therapy
 ▪ In vitro evidence of synergy
 ▪ Anticipated the combination well tolerated
Inclusion criteria

Newly-diagnosed
Any of:
• Metastatic
• Node-Positive
• ≥2 of: Stage T3/4
 PSA ≥ 40ng/ml
 Gleason 8-10

Full criteria
www.stampedetrial.org
Inclusion criteria

Newly-diagnosed
Any of:
• Metastatic
• Node-Positive
• ≥2 of: Stage T3/4
 PSA ≥40ng/ml
 Gleason 8-10

Relapsing after previous RP or RT with ≥1 of:
• PSA ≥4ng/ml and rising with doubling time <6m
• PSA ≥20ng/ml
• Node-positive
• Metastatic

Full criteria
www.stampedetrial.org
Inclusion criteria

Newly-diagnosed
Any of:
• Metastatic
• Node-Positive
• ≥2 of: Stage T3/4
 PSA ≥40ng/ml
 Gleason 8-10

Relapsing after previous RP or RT with ≥1 of:
• PSA ≥4ng/ml and rising with doubling time <6m
• PSA ≥20ng/ml
• Node-positive
• Metastatic

All patients
Fit for all protocol treatment
Fit for follow-up
WHO performance status 0-2
Written informed consent

Full criteria
www.stampedetrial.org
Outcome measures

Primary outcome measure
Overall survival
Outcome measures

Primary outcome measure
- Overall survival

Secondary outcome measures
- Failure-free survival (FFS)
- Toxicity
- Quality of life
- Skeletal-related events
- Cost effectiveness
Outcome measures

<table>
<thead>
<tr>
<th>Primary outcome measure</th>
<th>Secondary outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td>Failure-free survival (FFS)</td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
</tr>
<tr>
<td></td>
<td>Quality of life</td>
</tr>
<tr>
<td></td>
<td>Skeletal-related events</td>
</tr>
<tr>
<td></td>
<td>Cost effectiveness</td>
</tr>
</tbody>
</table>

FFS definition

First of:
- PSA failure
- Local failure
- Lymph node failure
- Distant metastases
- Prostate cancer death
Outcome measures

Primary outcome measure
- Overall survival

Secondary outcome measures
- Failure-free survival (FFS)
- Toxicity
- Quality of life
- Skeletal-related events
- Cost effectiveness

FFS definition
First of:
- PSA failure
- Local failure
- Lymph node failure
- Distant metastases
- Prostate cancer death

PSA failure definition
PSA fall $\geq 50\%$
- \rightarrow 24wk nadir + 50% and \rightarrow >4ng/ml

PSA fall of <50%
- \rightarrow failure at $t=0$
Multi-arm multi-stage (MAMS) design

For each research comparison

• Allocation ratio of 2 control to 1 research

• Target 25% relative improvement in overall survival
 ▪ HR=0.75

• Interim analysis
 ▪ 3 lack-of-benefit analyses on failure-free survival

• Main analysis on primary outcome measure
 → Requires ~400 control arm deaths
 ▪ Power and alpha 90% and 0.025, 1-sided

Overall original comparisons

▪ Power and alpha 83% and 0.013, 1-sided
▪ Familywise error rate ~5%
Multi-arm multi-stage (MAMS) design

For each research comparison
 • Allocation ratio of 2 control to 1 research
 • Target 25% relative improvement in overall survival
 ▪ HR=0.75
 • Interim analysis
 ▪ 3 lack-of-benefit analyses on failure-free survival
 • Main analysis on primary outcome measure
 → Requires ~400 control arm deaths
 ▪ Power and alpha 90% and 0.025, 1-sided

Overall original comparisons
 ▪ Power and alpha 83% and 0.013, 1-sided
 ▪ Familywise error rate ~5%
Multi-arm multi-stage (MAMS) design

For each research comparison

- Allocation ratio of 2 control to 1 research
- Target 25% relative improvement in overall survival
 - HR=0.75
- Interim analysis
 - 3 lack-of-benefit analyses on failure-free survival
- Main analysis on primary outcome measure
 → Requires ~400 control arm deaths
 - Power and alpha 90% and 0.025, 1-sided

Overall original comparisons

- Power and alpha 83% and 0.013, 1-sided
- Familywise error rate ~5%
Multi-arm multi-stage (MAMS) design

For each research comparison

• Allocation ratio of 2 control to 1 research
• Target 25% relative improvement in overall survival
 ▪ HR=0.75
• Interim analysis
 ▪ 3 lack-of-benefit analyses on failure-free survival
• Main analysis on primary outcome measure
 → Requires \(~400\) control arm deaths
 ▪ Power and alpha 90% and 0.025, 1-sided

Over all original comparisons

▪ Power and alpha 83% and 0.013, 1-sided
▪ Familywise error rate \(~5\%)
Multi-arm multi-stage (MAMS) design

For each research comparison

- Allocation ratio of 2 control to 1 research
- Target 25% relative improvement in overall survival
 - HR=0.75
- Interim analysis
 - 3 lack-of-benefit analyses on failure-free survival
- Main analysis on primary outcome measure
 → Requires ~400 control arm deaths
 - Power and alpha 90% and 0.025, 1-sided

Overall original comparisons

- Power and alpha 83% and 0.013, 1-sided
- Familywise error rate ~5%
STAMPEDE: Initiation

Trial arms:

- A: Standard-of-care (SOC) = ADT (+/-RT)
- B: SOC + zoledronic acid
- C: SOC + docetaxel
- D: SOC + celecoxib
- E: SOC + zoledronic acid + docetaxel
- F: SOC + zoledronic acid + celecoxib

Oct-2005: Start of trial

- Accrual - past
- Accrual - future
- FU and main analysis
STAMPEDE: Activity Stage 2 -- celecoxib stops accrual

STAMPEDE: All docetaxel and zoledronic acid comparisons

A = ~1200 pts --> ~404 primary outcome measure events
B = ~600 pts, C = ~600 pts, E = ~600 pts
Comparison
Open: Oct-2005
Closed: Mar-2013
Accrual: 2962

Number of patients
1184 A Standard-of-care (SOC)
593 B SOC + zoledronic acid
592 C SOC + docetaxel
593 E SOC + zoledronic acid + docetaxel
Accrual

Comparison
Open: Oct-2005
Closed: Mar-2013
Accrual: 2962

Number of patients
1184 A Standard-of-care (SOC)
593 B SOC + zoledronic acid
592 C SOC + docetaxel
593 E SOC + zoledronic acid + docetaxel
Patient characteristics

<table>
<thead>
<tr>
<th>Percentage</th>
<th>WHO PS 1</th>
<th>WHO PS 2</th>
<th>Median age</th>
</tr>
</thead>
<tbody>
<tr>
<td>21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65yr</td>
<td></td>
<td></td>
<td>(min 40, max 84)</td>
</tr>
</tbody>
</table>

- Planned for RT (72% of N0M0 pts)
- Previous local therapy
- LHRH analogues 29%
- Metastatic (85% Bony mets)
- 24% N+M0
- 98% N0M0

Balanced by arm

[s] Stratification factors + hospital + NSAID/aspirin
Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>WHO PS 2</td>
<td>[s]</td>
</tr>
<tr>
<td>21%</td>
<td>WHO PS 1</td>
<td>[s]</td>
</tr>
<tr>
<td>65yr</td>
<td>Median age</td>
<td>[s]</td>
</tr>
<tr>
<td></td>
<td>(min 40, max 84)</td>
<td>[s]</td>
</tr>
<tr>
<td>61%</td>
<td>Metastatic</td>
<td>[s]</td>
</tr>
<tr>
<td></td>
<td>(85% Bony mets)</td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>N+M0</td>
<td></td>
</tr>
<tr>
<td>24%</td>
<td>NOMO</td>
<td></td>
</tr>
</tbody>
</table>

Balanced by arm

[s] Stratification factors + hospital + NSAID/aspirin
Patient characteristics

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
<th>[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>WHO PS 2</td>
<td>[s]</td>
</tr>
<tr>
<td>21%</td>
<td>WHO PS 1</td>
<td>[s]</td>
</tr>
<tr>
<td>65yr</td>
<td>Median age (min 40, max 84)</td>
<td>[s]</td>
</tr>
<tr>
<td>61%</td>
<td>Metastatic (85% Bony mets)</td>
<td>[s]</td>
</tr>
<tr>
<td>15%</td>
<td>N+M0</td>
<td></td>
</tr>
<tr>
<td>24%</td>
<td>N0M0</td>
<td></td>
</tr>
<tr>
<td>98%</td>
<td>LHRH analogues</td>
<td>[s]</td>
</tr>
<tr>
<td>29%</td>
<td>Planned for RT (72% of N0M0 pts)</td>
<td>[s]</td>
</tr>
<tr>
<td>6%</td>
<td>Previous local therapy</td>
<td></td>
</tr>
</tbody>
</table>

Balanced by arm

[s] Stratification factors + hospital + NSAID/aspirin
Zoledronic acid: Failure-free survival

SOC
- Median FFS (95% CI): 21m (18, 24m)

SOC+ZA
- Median FFS (95% CI): 21m (18, 25m)

HR (95%CI)
- 0.93 (0.82, 1.05)
- P-value: 0.26

Non-PH p-value: 0.99

Restricted mean FFS time
- SOC: 35.2m
- SOC+Doc: 36.9m
- Diff (95%CI): 1.7m (-0.8, 4.2m)
Zoledronic acid: Survival

SOC: 405 deaths
SOC+ZA: 197 deaths

HR (95%CI): 0.93 (0.79, 1.11)
P-value: 0.44

Non-PH p-value: 0.83

Median OS (95% CI):
SOC: 67m (60, 91m)
SOC+ZA: 80m (70, NR)

Restricted mean OS time:
SOC: 58.5m
SOC+Doc: 59.5m
Diff (95%CI): 1.0m (-1.4, 3.4m)
Docetaxel: Failure-free survival

<table>
<thead>
<tr>
<th>Group</th>
<th>Events</th>
<th>Median FFS (95% CI)</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>750</td>
<td>21m (18, 24m)</td>
<td>0.62 (0.54, 0.70)</td>
<td><0.00000000001*</td>
</tr>
<tr>
<td>SOC+Doc</td>
<td>371</td>
<td>37m (33, 42m)</td>
<td></td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Non-PH p-value 0.0002

Restricted mean FFS time
- SOC: 35.3m
- SOC+Doc: 44.4m

Diff (95% CI): 9.1m (6.3, 11.9m)

*exact p-value 0.0000000000002014
Docetaxel: Survival

- SOC: 405 deaths
- SOC+Doc: 165 deaths

HR (95%CI): 0.76 (0.63, 0.91)
P-value: 0.003

Non-PH p-value: 0.51

Median OS (95% CI):
- SOC: 67m (60, 91m)
- SOC+Doc: 77m (70, NR)

Restricted mean OS time:
- SOC: 58.8m
- SOC+Doc: 63.4m

Diff (95%CI): 4.6m (1.8, 7.3m)
Docetaxel: Survival

SOC

- 405 deaths
- HR (95%CI) 0.76 (0.63, 0.91)
- P-value 0.003

SOC+Doc

- 165 deaths
- Non-PH p-value 0.51

Median OS (95% CI)

- SOC 67m (60, 91m)
- SOC+Doc 77m (70, NR)

Restricted mean OS time

- SOC 58.8m
- SOC+Doc 63.4m
- Diff (95%CI) 4.6m (1.8, 7.3m)
Docetaxel: Survival

<table>
<thead>
<tr>
<th></th>
<th>SOC deaths</th>
<th>SOC+Doc deaths</th>
<th>HR (95%CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>405</td>
<td>165</td>
<td>0.76 (0.63, 0.91)</td>
<td>0.003</td>
</tr>
<tr>
<td>SOC+Doc</td>
<td>165</td>
<td>405</td>
<td></td>
<td>0.51</td>
</tr>
</tbody>
</table>

Non-PH p-value 0.51

Median OS (95% CI):
- SOC: 67m (60, 91m)
- SOC+Doc: 77m (70, NR)

Restricted mean OS time:
- SOC: 58.8m
- SOC+Doc: 63.4m
Diff (95%CI): 4.6m (1.8, 7.3m)
Zoledronic acid + docetaxel: Failure-free survival

SOC 750 FFS events
SOC+ZA+Doc 371 FFS events

HR (95%CI) 0.62 (0.54, 0.71)
P-value <0.0000000001*a

Non-PH p-value <0.0000000001*b

Median FFS (95% CI)
SOC 21m (18, 24m)
SOC+ZA+Doc 37m (31, 42m)

Restricted mean FFS time
SOC 35.3m
SOC+ZA+Doc 43.5m
Diff (95%CI) 8.2m (5.5, 11.1m)

*aexact HR p-value 0.000000000005038
*bexact non-PH p-value 0.000000010376
Zoledronic acid + docetaxel: Survival

SOC 405 deaths
SOC+ZA+Doc 181 deaths
HR (95%CI) 0.81 (0.68, 0.97)
P-value 0.02
Non-PH p-value 0.40

Median OS (95% CI)
SOC 67m (60, 91m)
SOC+ZA+Doc 72m (63, 90m)

Restricted mean OS time
SOC 58.4m
SOC+Doc 61.5m
Diff (95%CI) 3.4m (0.5, 6.2m)
Consistency of treatment effect

• Subgroups included:
 - Metastatic status (M0, M1)
 - Nodal status (N0, N+, NX)
 - Gleason sum score (≤7, 8+, unknown)
 - PSA pre-hormone therapy (0-20ng/ml, 20-40, 40-100, 100+)
 - Age at randomisation (under 70, 70 or over)
 - WHO PS (0, 1-2)
 - NSAID/Aspirin use (no use, uses either)

• No good evidence of heterogeneity
Consistency of treatment effect

• Subgroups included:
 - Metastatic status (M0, M1)
 - Nodal status (N0, N+, NX)
 - Gleason sum score (≤7, 8+, unknown)
 - PSA pre-hormone therapy (0-20ng/ml, 20-40, 40-100, 100+)
 - Age at randomisation (under 70, 70 or over)
 - WHO PS (0, 1-2)
 - NSAID/Aspirin use (no use, uses either)

• No good evidence of heterogeneity
Treatment effect by metastatic status: FFS

Pre-planned analysis

<table>
<thead>
<tr>
<th>Mets status</th>
<th>FFS events</th>
<th>No. pts</th>
<th>Haz. Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>255</td>
<td>686</td>
<td>0.98 (0.75, 1.28)</td>
</tr>
<tr>
<td>M1</td>
<td>866</td>
<td>1091</td>
<td>0.90 (0.78, 1.04)</td>
</tr>
<tr>
<td>Overall</td>
<td>1121</td>
<td>1777</td>
<td>0.93 (0.82, 1.05)</td>
</tr>
</tbody>
</table>

+ZA

<table>
<thead>
<tr>
<th>Mets status</th>
<th>FFS events</th>
<th>No. pts</th>
<th>Haz. Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>229</td>
<td>689</td>
<td>0.57 (0.42, 0.76)</td>
</tr>
<tr>
<td>M1</td>
<td>832</td>
<td>1087</td>
<td>0.62 (0.54, 0.73)</td>
</tr>
<tr>
<td>Overall</td>
<td>1061</td>
<td>1776</td>
<td>0.62 (0.54, 0.70)</td>
</tr>
</tbody>
</table>

+Doc

<table>
<thead>
<tr>
<th>Mets status</th>
<th>FFS events</th>
<th>No. pts</th>
<th>Haz. Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>232</td>
<td>687</td>
<td>0.70 (0.52, 0.94)</td>
</tr>
<tr>
<td>M1</td>
<td>832</td>
<td>1090</td>
<td>0.60 (0.52, 0.70)</td>
</tr>
<tr>
<td>Overall</td>
<td>1064</td>
<td>1777</td>
<td>0.62 (0.54, 0.71)</td>
</tr>
</tbody>
</table>

+ZA+Doc
Treatment effect by metastatic status: Overall survival

Pre-planned analysis

<table>
<thead>
<tr>
<th>Mets status</th>
<th>OS events</th>
<th>No. pts</th>
<th>Haz. Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>93</td>
<td>686</td>
<td>0.96 (0.62, 1.48)</td>
</tr>
<tr>
<td>M1</td>
<td>509</td>
<td>1091</td>
<td>0.92 (0.76, 1.11)</td>
</tr>
<tr>
<td>Overall</td>
<td>602</td>
<td>1777</td>
<td>0.93 (0.79, 1.11)</td>
</tr>
</tbody>
</table>

+ZA

<table>
<thead>
<tr>
<th>Mets status</th>
<th>OS events</th>
<th>No. pts</th>
<th>Haz. Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>93</td>
<td>689</td>
<td>1.01 (0.65, 1.56)</td>
</tr>
<tr>
<td>M1</td>
<td>477</td>
<td>1087</td>
<td>0.73 (0.59, 0.89)</td>
</tr>
<tr>
<td>Overall</td>
<td>570</td>
<td>1776</td>
<td>0.76 (0.63, 0.91)</td>
</tr>
</tbody>
</table>

+Doc

<table>
<thead>
<tr>
<th>Mets status</th>
<th>OS events</th>
<th>No. pts</th>
<th>Haz. Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>91</td>
<td>687</td>
<td>1.03 (0.66, 1.61)</td>
</tr>
<tr>
<td>M1</td>
<td>495</td>
<td>1090</td>
<td>0.78 (0.65, 0.95)</td>
</tr>
<tr>
<td>Overall</td>
<td>586</td>
<td>1777</td>
<td>0.81 (0.68, 0.97)</td>
</tr>
</tbody>
</table>

+ZA+Doc
Docetaxel: Survival – M1 Patients

SOC 343 deaths
SOC+Doc 134 deaths
HR (95%CI) 0.73 (0.59, 0.89)
P-value 0.002
Non-PH p-value 0.23

Median OS (95% CI)
SOC 43m (24, 88m)
SOC+Doc 65m (27, NR)

Restricted mean OS time
SOC 49.3m
SOC+Doc 56.1m
Diff (95%CI) 6.8m (2.8, 11.0m)
Docetaxel treatment

Target Dose: 75mg/m2, every 3 weeks for 6 cycles (+prednisolone 10mg od)
Docetaxel treatment

Target Dose: 75mg/m², every 3 weeks for 6 cycles (+prednisolone 10mg od)

<table>
<thead>
<tr>
<th></th>
<th>Doc</th>
<th>ZA+Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report receiving 6 cycles</td>
<td>76%</td>
<td>69%</td>
</tr>
<tr>
<td>Report receiving ≥5 cycles</td>
<td>80%</td>
<td>74%</td>
</tr>
</tbody>
</table>
Zoledronic acid treatment

Target Dose: 4mg every 3 weeks, up to 18 weeks then every 4 weeks up to 2 years
Grade 3+ adverse events ever reported

<table>
<thead>
<tr>
<th>Patients randomised</th>
<th>A (SOC)</th>
<th>B (SOC+ZA)</th>
<th>C (SOC+Doc)</th>
<th>E (SOC+ZA+Doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1184</td>
<td>593</td>
<td>592</td>
<td>593</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with adverse event data</th>
<th>A (SOC)</th>
<th>B (SOC+ZA)</th>
<th>C (SOC+Doc)</th>
<th>E (SOC+ZA+Doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1174</td>
<td>587</td>
<td>579</td>
<td>564</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 3-5 AE (G5)</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>363</td>
<td>31%</td>
<td>185</td>
<td>31%</td>
<td>291</td>
<td>51%</td>
<td>294</td>
<td>52%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adverse Event Category</th>
<th>A (SOC)</th>
<th>B (SOC+ZA)</th>
<th>C (SOC+Doc)</th>
<th>E (SOC+ZA+Doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine disorder</td>
<td>12%</td>
<td>12%</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>Blood and lymphatic (febrile neutropenia)</td>
<td>1%</td>
<td>2%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Blood/bone marrow (neutrophils)</td>
<td>1%</td>
<td>1%</td>
<td>12%</td>
<td>11%</td>
</tr>
<tr>
<td>General disorder</td>
<td>4%</td>
<td>5%</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>Musculo-skeletal</td>
<td>5%</td>
<td>5%</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>Gastrointestinal disorder</td>
<td>3%</td>
<td>3%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Renal</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
<td>6%</td>
</tr>
</tbody>
</table>
Grade 3+ adverse events ever reported

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOC</td>
<td>SOC+ZA</td>
<td>SOC+Doc</td>
<td>SOC+ZA+Doc</td>
</tr>
<tr>
<td>Patients randomised</td>
<td>1184</td>
<td>593</td>
<td>592</td>
<td>593</td>
</tr>
<tr>
<td>Patients with adverse event data</td>
<td>1174</td>
<td>587</td>
<td>579</td>
<td>564</td>
</tr>
<tr>
<td>Grade 3-5 AE (G5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>363 (3)</td>
<td>185 (1)</td>
<td>291 (3)</td>
<td>294 (7)</td>
</tr>
<tr>
<td>%</td>
<td>31%</td>
<td>31%</td>
<td>51%</td>
<td>52%</td>
</tr>
<tr>
<td>Endocrine disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(febrile neutropenia)</td>
<td>1%</td>
<td>2%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Blood/bone marrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(neutrophils)</td>
<td>1%</td>
<td>1%</td>
<td>12%</td>
<td>11%</td>
</tr>
<tr>
<td>General disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculo-skeletal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Blood and lymphatic (febrile neutropenia)**: 1% (A), 2% (B), 12% (C), 12% (E)
- **Blood/bone marrow (neutrophils)**: 1% (A), 1% (B), 12% (C), 11% (E)
Grade 3+ adverse events at 1 year

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Incidence</th>
<th>Rate</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>71/732</td>
<td>9.7%</td>
<td>(7.6% to 11.8%)</td>
</tr>
<tr>
<td>SOC+ZA</td>
<td>40/377</td>
<td>10.6%</td>
<td>(7.5% to 13.7%)</td>
</tr>
<tr>
<td>SOC+Doc</td>
<td>44/437</td>
<td>10.1%</td>
<td>(7.2% to 12.9%)</td>
</tr>
<tr>
<td>SOC+ZA+Doc</td>
<td>51/450</td>
<td>11.3%</td>
<td>(8.4% to 14.3%)</td>
</tr>
</tbody>
</table>

Early peak in toxicity during chemotherapy seems to settle by 1 year.
Time to first treatment for failure-free survival event

- treatment for progression given at the investigator’s discretion
Time to first “life-prolonging therapy” for progression

![Graph showing time to any life-prolonging therapy by trial arm and number of patients reporting progression.]

<table>
<thead>
<tr>
<th>Group</th>
<th>At risk (events)</th>
<th>Time from progression (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>750</td>
<td>0.00</td>
</tr>
<tr>
<td>SOC+ZA</td>
<td>371</td>
<td>0.00</td>
</tr>
<tr>
<td>SOC+Doc</td>
<td>311</td>
<td>0.00</td>
</tr>
<tr>
<td>SOC+ZA+Doc</td>
<td>314</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Use of “life-prolonging therapy” for progression

<table>
<thead>
<tr>
<th></th>
<th>A SOC</th>
<th>B SOC+ZA</th>
<th>C SOC+Doc</th>
<th>E SOC+ZA+Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pts with FFS event (n)</td>
<td>750</td>
<td>371</td>
<td>311</td>
<td>314</td>
</tr>
<tr>
<td>Life-prolonging therapy reported ever (n)</td>
<td>372</td>
<td>168</td>
<td>135</td>
<td>130</td>
</tr>
<tr>
<td>Docetaxel (%)</td>
<td>41%</td>
<td>36%</td>
<td>14%</td>
<td>15%</td>
</tr>
<tr>
<td>Abiraterone (%)</td>
<td>23%</td>
<td>19%</td>
<td>28%</td>
<td>27%</td>
</tr>
<tr>
<td>Enzalutamide (%)</td>
<td>7%</td>
<td>4%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Cabazitaxel (%)</td>
<td>3%</td>
<td>3%</td>
<td>6%</td>
<td>9%</td>
</tr>
<tr>
<td>Radium-223 (%)</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Use of “life-prolonging therapy” for progression

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>SOC+ZA</td>
<td>SOC+Doc</td>
<td>SOC+ZA+Doc</td>
</tr>
<tr>
<td>Pts with FFS event (n)</td>
<td>750</td>
<td>371</td>
<td>311</td>
</tr>
<tr>
<td>Life-prolonging therapy reported ever (n)</td>
<td>372</td>
<td>168</td>
<td>135</td>
</tr>
</tbody>
</table>

- **Docetaxel (%)**
 - A: 41%
 - B: 36%
 - C: 14%
 - E: 15%

- **Abiraterone (%)**
 - A: 23%
 - B: 19%
 - C: 28%
 - E: 27%

- **Enzalutamide (%)**
 - A: 7%
 - B: 4%
 - C: 7%
 - E: 7%

- **Cabazitaxel (%)**
 - A: 3%
 - B: 3%
 - C: 6%
 - E: 9%

- **Radium-223 (%)**
 - A: 0%
 - B: 0%
 - C: 1%
 - E: 1%
Conclusions

- Docetaxel improves survival for hormone-naive prostate cancer
- Zoledronic acid does not improve survival
- Adding both improves survival but offers no obvious benefit over adding just docetaxel
- Multi-arm, multi-stage trials are practicable and efficient
- Docetaxel should be:
 - Considered for routine practice in suitable men with newly-diagnosed metastatic disease
 - Considered for selected men with high-risk non-metastatic disease in view of substantial prolongation of failure-free survival
Conclusions

- Docetaxel improves survival for hormone-naive prostate cancer
- Zoledronic acid does not improve survival
- Adding both improves survival but offers no obvious benefit over adding just docetaxel
- Multi-arm, multi-stage trials are practicable and efficient
- Docetaxel should be:
 - Considered for routine practice in suitable men with newly-diagnosed metastatic disease
 - Considered for selected men with high-risk non-metastatic disease in view of substantial prolongation of failure-free survival
Conclusions

- Docetaxel improves survival for hormone-naive prostate cancer
- Zoledronic acid does not improve survival
- Adding both improves survival but offers no obvious benefit over adding just docetaxel

- Multi-arm, multi-stage trials are practicable and efficient
- Docetaxel should be:
 - Considered for routine practice in suitable men with newly-diagnosed metastatic disease
 - Considered for selected men with high-risk non-metastatic disease in view of substantial prolongation of failure-free survival
Conclusions

- Docetaxel improves survival for hormone-naive prostate cancer
- Zoledronic acid does not improve survival
- Adding both improves survival but offers no obvious benefit over adding just docetaxel
- Multi-arm, multi-stage trials are practicable and efficient

- Docetaxel should be:
 → Considered for routine practice in suitable men with newly-diagnosed metastatic disease
 → Considered for selected men with high-risk non-metastatic disease in view of substantial prolongation of failure-free survival
Conclusions

- Docetaxel improves survival for hormone-naive prostate cancer
- Zoledronic acid does not improve survival
- Adding both improves survival but offers no obvious benefit over adding just docetaxel
- Multi-arm, multi-stage trials are practicable and efficient

- Docetaxel should be:
 - Considered for routine practice in suitable men with newly-diagnosed metastatic disease
 - Considered for selected men with high-risk non-metastatic disease in view of substantial prolongation of failure-free survival
STAMPEDE investigators

UNITED KINGDOM

- Aberystwyth, Bronlais General Hospital (4; S Durrani)
- Ashford, William Harvey Hospital (0; C Thomas, N Mithal)
- Aylesbury, High Wycombe & Stoke Mandeville Hospital (1; A Sabharwal, P Camilleri, C Alcock, J Brady, A Protheroe)
- Ayr, Ayr Hospital (14; H Glen, J Ansari, R Mahmood)
- Barnet, Barnet General Hospital (14; U McGovern, A Eichholz)
- Barnstaple, North Devon District Hospital (25; D Sheehan)
- Basingstoke, Basingstoke and North Hampshire Hospital (12; R Shaffer, T Guerrero-Urban)
- Bath, Royal United Hospital (22; O Frim, M Beresford, H Newman, P Kehagioglou)
- Bebington, Clatterbridge Centre for Oncology (64; S Tolan, J Littler, I Syndikus, A Ibrahim, A Montazeri)
- Belfast, Belfast City Hospital (118; J O’Sullivan, D Mitchell, P Lin, D Stewart, S Jain)
- Birmingham, Birmingham Heartlands Hospital (32; A Zarkar)
- Birmingham, City Hospital (24; D Ford)
- Birmingham, Queen Elizabeth Hospital (Birmingham) (141; N James, E Porfiri, D Ford)
- Blackburn, Royal Blackburn Hospital (62; O Parikh)
- Bolton, Royal Bolton Hospital (23; T Elliott, M Pantelides)
- Boston, Pilgrim Hospital (; T Sreenivasan, M Panades)
- Bournemouth, Royal Bournemouth Hospital (83; S Brock, J Davies)
- Bradford, Bradford Royal Infirmary (24; S Brown)
- Brighton, Royal Sussex County Hospital (63; A Robinson, G Platanitis, D Bloomfield, M Wilkins)
- Bristol, Bristol Haematology & Oncology Centre (60; A Bahl, M Beresford, S Hilman, P Wilson, C Herbert)
- Burnley, Burnley General Hospital (8; N Charnley, O Parikh)
- Burton-on-Trent, Queens Hospital Burton (37; S Chethiyawardana, D Muthukumar, P Pattu, M Smith-Howell, P Chakraborti)
- Bury St Edmunds, West Suffolk Hospital (16; C Woodward, Y Rimmer)
- Cambridge, Addenbrooke’s Hospital (5; M Mazhar)
- Canterbury, Kent and Canterbury Hospital (36; C Thomas, N Mithal, R Raman, A Edwards)
- Cardiff, Velindre Hospital (5; M Mason, J Barber, J Lester, J Staffurth, J Tanguay, N Palaniappan, S Kumar, M Button, D Mort)
- Carlisle, Cumberland Infirmary (7; A Kumar, N Sidek)
- Chelmsford, Broomfield Hospital (30; A Hamid, U Panwar, P Leone)
STAMPEDE investigators

UNITED KINGDOM

<table>
<thead>
<tr>
<th>Location</th>
<th>Investigators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheltenham, Cheltenham General Hospital</td>
<td>(10; J Bowen, P Jenkins)</td>
</tr>
<tr>
<td>Chester, Countess of Chester Hospital</td>
<td>(66; A Ibrahim)</td>
</tr>
<tr>
<td>Colchester, Essex County Hospital</td>
<td>(7; B Sizer, M Kumar)</td>
</tr>
<tr>
<td>Coventry, University Hospital Coventry and Warwickshire</td>
<td>(24; A Stockdale, J Worlding)</td>
</tr>
<tr>
<td>Crewe, Leighton Hospital</td>
<td>(41; J Wylie)</td>
</tr>
<tr>
<td>Darlington, Darlington Memorial Hospital</td>
<td>(27; J Hardman, C Peedell, M Kagzi, T Mukhopadhyay)</td>
</tr>
<tr>
<td>Derby, London Road Community Hospital</td>
<td>(16; P Chakraborti, D Muthukumar)</td>
</tr>
<tr>
<td>Derby, Royal Derby Hospital</td>
<td>(71; P Chakraborti, D Muthukumar, P Pattu)</td>
</tr>
<tr>
<td>Doncaster, Doncaster Royal Infirmary</td>
<td>(0; M Alzouebi, C Ferguson, M Alzouebi)</td>
</tr>
<tr>
<td>Dorchester, Dorset County Hospital</td>
<td>(21; P Crellin, S Andrews)</td>
</tr>
<tr>
<td>Dudley, Russells Hall Hospital</td>
<td>(46; P Ramachandra, P Keng-Koh)</td>
</tr>
<tr>
<td>Durham, University Hospital of North Durham</td>
<td>(17; R McMenemin)</td>
</tr>
<tr>
<td>Eastbourne, Eastbourne District General Hospital</td>
<td>(52; F McKinna)</td>
</tr>
<tr>
<td>Edinburgh, Western General Hospital</td>
<td>(105; D McLaren)</td>
</tr>
<tr>
<td>Edmonton, North Middlesex Hospital</td>
<td>(15; J Newby, A Thompson, S Karp, F Neave)</td>
</tr>
<tr>
<td>Exeter, Royal Devon and Exeter Hospital</td>
<td>(102; D Sheehan, R Srinivasan, V Ford)</td>
</tr>
<tr>
<td>Gillingham, Medway Maritime Hospital</td>
<td>(18; H Taylor)</td>
</tr>
<tr>
<td>Glasgow, Beatson W.Scotland Cancer Centre</td>
<td>(41; R Jones, M Russell, J Wallace, J Graham, R Mahmood, C Lamb, A Al-hasso, B Venugopal)</td>
</tr>
<tr>
<td>Guildford, Royal Surrey County Hospital</td>
<td>(30; R Laing, J Money-Kyrle, S Khaksar, K Wood, T Guerrero-Urbano)</td>
</tr>
<tr>
<td>Harlow, Princess Alexandra Hospital</td>
<td>(10; N Gupta, L Melcher)</td>
</tr>
<tr>
<td>Hereford, Hereford County Hospital</td>
<td>(9; W Grant, A Cook)</td>
</tr>
<tr>
<td>High Wycombe, Wycombe Hospital</td>
<td>(15; A Sabharwal, A Protheroe, P Camilleri, T Pwint, G Andrade)</td>
</tr>
<tr>
<td>Huddersfield, Huddersfield Royal Infirmary</td>
<td>(76; U Hofmann)</td>
</tr>
<tr>
<td>Hull - Cottingham, Castle Hill Hospital</td>
<td>(2; M Simms, J Hetherington)</td>
</tr>
<tr>
<td>Inverness, Raigmore Hospital</td>
<td>(68; N McPhail, K Kelly, A Sadozye, C Macgregor)</td>
</tr>
<tr>
<td>Ipswich, Ipswich Hospital</td>
<td>(0; R Brierly, R Venkitaraman, C Socrine, G Banerjee)</td>
</tr>
<tr>
<td>Keighley, Airedale General Hospital</td>
<td>(37; S Brown, M Crawford, C Sentamans)</td>
</tr>
<tr>
<td>Kidderminster, Kidderminster General Hospital</td>
<td>(19; M Churn, L Capaldi)</td>
</tr>
</tbody>
</table>
UNITED KINGDOM
• Larbert, Forth Valley Royal Hospital (22; N Sidek)
• Leeds, St James University Hospital (Leeds) (26; W Cross, S Prescott, D Bottomley, S Jain, C Loughrey, A Paul, A Henry, P Whelan)
• Lincoln, Lincoln County Hospital (15; T Sreenivasan, D Ballesteros-Quintail, M Panades, K Baria)
• Liverpool, Royal Liverpool University Hospital (37; Z Malik, C Eswar, P Robson)
• Liverpool, Triemlispital (1; D Siciliano)
• Liverpool, University Hospital Aintree (16; P Robson)
• London, Charing Cross Hospital (26; A Falconer)
• London, Guy's Hospital (104; S Chowdhury, P Harper, S Morris, R Popert, R Beaney)
• London, Hammersmith Hospital (0; A Falconer, S Mangar)
• London, Queen Elizabeth Hospital (Woolwich) (18; S Hughes)
• London, Royal Free Hospital (15; M Vilarino-Varela, K Pigott)
• London, Royal Marsden Hospital (9; V Khoo)
• London, St Bartholomews Hospital (3; K Tipples, P Wells)
• London, St George's Hospital (29; L Pickering)
• London, St Mary's Hospital (0; A Falconer, S Stewart)
• London, University College Hospital (21; U McGovern, S Harland, H Payne)
• Maidstone, Maidstone Hospital (84; S Beesley, A Clarke, H Taylor)
• Manchester, Christie Hospital (1; N Clarke, T Elliott, J Wylie, J Livsey, J Logue, R Cowan)
• Manchester, Withington Hospital (7; V Sangar)
• Margate, Queen Elizabeth The Queen Mother Hospital (1; C Thomas, R Raman, N Mithal)
• Middlesbrough, James Cook University Hospital (31; C Peedell, J Hardman, H Van, D Shakespeare, D Chadwick)
• Newcastle-upon-Tyne, Freeman Hospital (21; A Azzabi, R McMenemy, J Frew)
• Northwood, Mount Vernon Hospital (19; P Hoskin, R Alonzi, P Ostler, N Anyamene, R Hughes, J Dickson, C Westbury)
• Nottingham, Nottingham University Hospitals, City Campus (59; S Sundar, J Mills, E Chadwick)
• Nuneaton, George Eliot Hospital (9; A Chan)
• Oldham, Royal Oldham Hospital (17; J Livsey, A Choudhury)
• Oxford, Churchill Hospital (96; A Protheroe, D Cole)
• Poole, Poole Hospital (0; S Brock, J Davies)
STAMPEDE investigators

UNITED KINGDOM

- Portsmouth, Queen Alexandra Hospital (141; J Gale)
- Preston, Royal Preston Hospital (92; A Birtle, O Parikh, M Wise)
- Reading, Royal Berkshire Hospital (24; P Rogers, H O'Donnell, R Brown)
- Redditch, Alexandra Hospital (13; J Hamilton)
- Romford, Queen's Hospital (Romford) (74; S Gibbs, R Subramaniam)
- Salford, Salford Royal Hospital (48; N Clarke, M Lau, T Elliott)
- Scarborough, Scarborough General Hospital (59; M Hingorani)
- Sheffield, Weston Park Hospital (67; C Ferguson, P Kirkbride, M Alzouebi, T Das)
- Shrewsbury, Royal Shrewsbury Hospital (116; N Srijani, R Prashant)
- South Shields, South Tyneside District Hospital (5; A Azzabi)
- Southampton, Southampton General Hospital (48; C Heath, S Crabb, M Wheater)
- Southport, Southport and Formby District General Hospital (29; N Bhalla, C Eswar, A Sivapalasuntharam)
- St Leonards-on-Sea, Conquest Hospital (5; F McKinna, K Lees, S Beesley)
- Stevenage, Lister Hospital (27; R Hughes)
- Stockport, Stepping Hill Hospital (90; J Logue, A Adeyoju)
- Stockton-on-Tees, University Hospital of North Tees (10; D Shakespeare)
- Stoke-on-Trent, Royal Stoke Hospital (56; F Adab, R Bhana)
- Sunderland, Sunderland Royal Hospital (22; A Azzabi, I Pedley)
- Sutton, Royal Marsden Hospital (Sutton) (104; D Earmaley, C Parker, R Huddart, V Khoo)
- Sutton Coldfield, Good Hope Hospital (15; D Ford)
- Sutton-in-Ashfield, King's Mill Hospital (35; D Saunders, G Walker)
- Swansea, Singleton Hospital (122; J Wagstaff, G Bertelli, D Pudney, M Phan)
- Swindon, Great Western Hospital (40; D Cole, E Hill)
- Taunton, Musgrove Park Hospital (18; E Gray, J Graham, M Varughese, M Keni, G Plataniotis)
- Torquay, Torbay District General Hospital (81; A Lydon, R Srinivasan)
- Warrington, Warrington Hospital (56; I Syndikus, S Tolan)
- Warwick, Warwick Hospital (14; A Stockdale)
STAMPEDE investigators

UNITED KINGDOM
- Westcliff on Sea, Southend University Hospital (51; D Tsang, I Ahmed, O Chan, N Sarwar)
- Weston Super Mare, Weston General Hospital (12; S Hilman)
- Whitehaven, West Cumberland Hospital (1; J Nicoll)
- Wigan, Royal Albert Edward Infirmary (22; A Tran, R Cowan)
- Wolverhampton, New Cross Hospital, Wolverhampton (19; I Sayers)
- Worcester, Worcestershire Royal Hospital (19; L Capaldi, J Bowen)
- Worthing, Worthing Hospital (59; A Nikapota, D Bloomfield, F Castell)
- Yeovil, Yeovil District Hospital (3; E Gray, G Sparrow)

SWITZERLAND
- Aarau, Hirslanden Medical Centre (3; R Popescu)
- Basel, Universitätsspital Basel (2; C Reutsh, B Seifest)
- Berne, Inselspital (2; G Thalmann, B Roth)
- Chur, Kantonsspital Graubünden (8; R Strebel, R Cathomas)
- Lausanne, Centre Hospitalier Universitaire Vaudois (2; D Berthold, P Jichlinski, F Herrera)
- St Gallen, Kantonsspital St Gallen (5; D Engeler, S Prensser)
Acknowledgements

MRC Clinical Trials Unit at UCL
Current M Sydes, M Spears, M Parmar, C Amos, F Schiavone, A Brown, O Prendiville, C Au, P Vaughan, Z Khan, N Begum, D Hague, Z Islam,
Ex S Naylor, N Kelk, J Nuttall, J Latham, K Sanders, C Green, T Fairfield, G Jovic, H Gardner, K Ward, S Peres, E Ades

Patient representations on Trial Management Group
Current R Millman, D Matheson
Ex D Hoe-Richardson, J Stansfield, J Dwyer

Independent Data Monitoring Committee (IDMC)
Current John Yarnold (chair), Doug Altman, Reg Hall, Bertrand Tombal
Ex Chris Williams (ex-chair)

Trial Steering Committee (TSC)
Current Jonathan Ledermann (chair), David Kirk, Jim Paul, Jan-Erik Damber
Ex John Fitzpatrick

Industry partners
Sanofi-Aventis
Novartis
Pfizer
Astellas
Janssen
Acknowledgements

And the 7000 men who have joined the trial to date

www.stampedetrial.org
Docetaxel and/or zoledronic acid for hormone-naïve prostate cancer: First survival results from STAMPEDE

Nicholas James
University of Warwick and Queen Elizabeth Hospital Birmingham

on behalf of

Matthew Sydes, Malcolm Mason, Noel Clarke, David Dearnaley, Melissa Spears, Robin Millman, Chris Parker, Alastair Ritchie, J. Martin Russell, John Staffurth, Robert Jones, Shaun Tolan, John Wagstaff, Andrew Protheroe, Rajaguru Srinivasan, Alison Birtle, Joe O'Sullivan, Richard Cathomas, Mahesh Parmar and the STAMPEDE Investigators